

Date: 20 November 2025

Swissmedic, Swiss Agency for Therapeutic Products

Swiss Public Assessment Report Extension of therapeutic indication

Amvuttra

International non-proprietary name: vutrisiran sodium

Pharmaceutical form: solution for injection in pre-filled syringe

Dosage strength(s): the usual recommended dose of

Amvuttra is 25 mg administered via subcutaneous injection once every 3

months

Route(s) of administration: subcutaneous use, single use only

Marketing authorisation holder: Alnylam Switzerland GmbH

Marketing authorisation no.: 69074

Decision and decision date: extension of therapeutic indication

approved on 16.10.2025

Note:

This assessment report is as adopted by Swissmedic with all information of a commercially confidential nature deleted.

SwissPARs are final documents that provide information on submissions at a particular point in time. They are not updated after publication.

Table of contents

1	Terms, Definitions, Abbreviations	3
2	Background information on the procedure	
2.1	Applicant's request(s) and information regarding procedure	
2.2	Indication and dosage	
2.2.1	Requested indication	
2.2.2	Approved indication	
2.2.3	Requested dosage	
2.2.4	Approved dosage	4
2.3	Regulatory history (milestones)	4
3	Clinical aspects	6
4	Risk management plan summary	7
5	Appendix	

1 Terms, Definitions, Abbreviations

ATTR-CM Transthyretin Amyloid Cardiomyopathy

EMA European Medicines Agency
MAH Marketing authorisation holder

RMP Risk management plan

SwissPAR Swiss Public Assessment Report

TPA Federal Act of 15 December 2000 on Medicinal Products and Medical Devices (SR

812.21

TPO Ordinance of 21 September 2018 on Therapeutic Products (SR 812.212.21)

2 Background information on the procedure

2.1 Applicant's request(s) and information regarding procedure

Extension(s) of the therapeutic indication(s)

The applicant requested the addition of a new therapeutic indication or modification of an approved one in accordance with Article 23 TPO.

Orphan drug status

The applicant requested orphan drug status in accordance with Article 4 a^{decies} no. 2 of the TPA. Orphan drug status was granted on 17 October 2022.

Authorisation as human medicinal product in accordance with Article 13 TPA

The applicant requested a reduced assessment procedure in accordance with Article 13 TPA.

2.2 Indication and dosage

2.2.1 Requested indication

Amouttra is indicated for the treatment of wild-type or hereditary transthyretin amyloidosis in adult patients with cardiomyopathy (ATTR-CM).

2.2.2 Approved indication

Amvuttra is indicated for the treatment of wild-type or hereditary transthyretin amyloidosis in adult patients with cardiomyopathy (ATTR-CM).

2.2.3 Requested dosage

Summary of the requested standard dosage:

No change to the dosage recommendation was requested with the application for extension of indication.

2.2.4 Approved dosage

(see appendix)

2.3 Regulatory history (milestones)

Application	9 May 2025		
Formal control completed	12 May 2025		
Preliminary decision	20 August 2025		
Response to preliminary decision	8 September 2025		
Final decision	16 October 2025		
Decision	approval		

Based on Art. 13 TPA, Swissmedic has not assessed the primary data (e.g. study reports) submitted with this application and relies for its decision on the assessment of the foreign reference authority, the EMA. This SwissPAR relates to the assessment report for Amvuttra, Reference Number: EMA/CHMP/177587/2025, first published 12 June 2025, issued by the EMA (Procedure No. EMEA/H/C/005852/II/0015).

3 Clinical aspects

Swissmedic has not assessed the primary data relating to clinical aspects submitted with this application and relies on the assessment of the foreign reference authority, the EMA (see section 2.3 Regulatory history (milestones).

4 Risk management plan summary

The RMP summaries contain information on the medicinal products' safety profiles and explain the measures that are taken to further investigate and monitor the risks, as well as to prevent or minimise them

The RMP summaries are published separately on the Swissmedic website. It is the responsibility of the marketing authorisation holder to ensure that the content of the published RMP summaries is accurate and correct. As the RMPs are international documents, their summaries might differ from the content in the Information for healthcare professionals / product information approved and published in Switzerland, e.g. by mentioning risks that occur in populations or indications not included in the Swiss authorisations.

5 Appendix

Approved Information for healthcare professionals

Please be aware that the following version of the Information for healthcare professionals for Amvuttra was approved with the submission described in the SwissPAR. This Information for healthcare professionals may have been updated since the SwissPAR was published.

Please note that the valid and relevant reference document for the effective and safe use of medicinal products in Switzerland is the Information for healthcare professionals currently authorised by Swissmedic (see www.swissmedicinfo.ch).

Note:

The following Information for healthcare professionals has been translated by the MAH. It is the responsibility of the authorisation holder to ensure the translation is correct. The only binding and legally valid text is the Information for healthcare professionals approved in one of the official Swiss languages.

This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected new or serious adverse reactions. See the "Undesirable effects" section for advice on the reporting of adverse reactions.

AMVUTTRA®, solution for injection in pre-filled syringe

Composition

Active substances

Vutrisiran (as vutrisiran sodium). It contains synthetically produced, chemically modified small interfering ribonucleic acid (siRNA).

Excipients

Sodium dihydrogen phosphate dihydrate, disodium phosphate dihydrate, sodium chloride, water for injection, sodium hydroxide (for pH adjustment), phosphoric acid (for pH adjustment), contains 5.9 mg of sodium per 1 mL.

Pharmaceutical form and active substance quantity per unit

Solution for injection in pre-filled syringe. Subcutaneous use. Single use only.

Appearance

Clear, colourless-to-yellow solution (pH of approximately 7; osmolality 210 to 390 mOsm/kg).

Quantity of active substance per unit

Each pre-filled syringe contains 25 mg vutrisiran (as vutrisiran sodium) in 0,5 mL of solution (50mg / mL).

Indications/Uses

Amouttra is indicated for the treatment of hereditary transthyretin amyloidosis in adult patients with stage 1 or stage 2 polyneuropathy (hATTR-PN).

Amvuttra is indicated for the treatment of wild-type or hereditary transthyretin amyloidosis in adult patients with cardiomyopathy (ATTR-CM).

Dosage/Administration

Therapy should be initiated under the supervision of a physician knowledgeable in the management of amyloidosis. Treatment should be started as early as possible in the disease course to prevent the accumulation of disability.

Usual dosage

The recommended dose of Amvuttra is 25 mg administered via subcutaneous injection once every 3 months.

Vitamin A supplementation at approximately, but not exceeding, 2500 IU to 3000 IU vitamin A per day is advised for patients treated with Amvuttra (see section «Warnings and Precautions»).

The decision to continue treatment in those patients whose disease progresses to stage 3 polyneuropathy should be taken at the discretion of the physician based on the overall benefit and risk assessment.

There is limited data with vutrisiran in patients with New York Heart Association (NYHA) Class IV and in patients who have both NYHA Class III and National Amyloidosis Centre (NAC) stage III. However, if patients on vutrisiran progress to these stages, these data suggest that patients can remain on treatment.

Patients with hepatic disorders

No dose adjustment is necessary in patients with mild (total bilirubin $\leq 1 \times 10^{10} \times 10^{10} \times 10^{10}$ and aspartate aminotransferase (AST) $\geq 1 \times 10^{10} \times 10^{$

Patients with renal disorders

No dose adjustment is necessary in patients with mild or moderate renal impairment (estimated glomerular filtration rate $[eGFR] \ge 30$ to < 90 mL/min/1.73 m²). Vutrisiran has not been studied in patients with severe renal impairment or end-stage renal disease and should only be used in these patients if the anticipated clinical benefit outweighs the potential risk (see section *«Pharmacokinetics»*).

Elderly patients

No dose adjustment is required in patients ≥ 65 years of age (see section «*Pharmacokinetics*»).

Children and adolescents

The safety and efficacy of Amvuttra in children or adolescents < 18 years of age have not been established. No data are available.

Delayed administration

If a dose is missed, Amvuttra should be administered as soon as possible. Dosing should be resumed every 3 months, from the most recently administered dose.

Mode of administration

Amvuttra is for subcutaneous use only. Amvuttra may be administered by a healthcare professional, the patient, or a caregiver.

Patients or caregivers may inject Amvuttra after guidance has been provided by a healthcare professional on proper subcutaneous injection technique.

This medicinal product is ready-to-use and for single-use only.

Visually inspect the solution for particulate matter and discolouration. Do not use if discoloured or if particles are present.

Prior to administration, if stored cold, the pre-filled syringe should be allowed to warm by leaving carton at room temperature for about 30 minutes.

- The subcutaneous injection should be administered into one of the following sites: the abdomen, thighs, or upper arms. If injected in the upper arm, the injection should be administered by a healthcare professional or a caregiver. Amvuttra should not be injected into scar tissue or areas that are reddened, inflamed, or swollen.
- If injecting into the abdomen, the area around the navel should be avoided.

Contraindications

Severe hypersensitivity (e.g., anaphylaxis) to the active substance or to any of the excipients listed in section «Composition».

Warnings and precautions

Vitamin A deficiency

By reducing serum transthyretin (TTR) protein, Amvuttra treatment leads to a decrease in serum vitamin A (retinol) levels (see «Properties/Effects»). Serum vitamin A levels below the lower limit of normal should be corrected and any ocular symptoms or signs due to vitamin A deficiency should be evaluated prior to initiation of treatment with Amvuttra.

Patients receiving Amvuttra should take oral supplementation of approximately, but not exceeding, 2500 IU to 3000 IU vitamin A per day to reduce the potential risk of ocular symptoms due to vitamin A deficiency. Ophthalmological assessment is recommended if patients develop ocular symptoms suggestive of vitamin A deficiency, including reduced night vision or night blindness, persistent dry eyes, eye inflammation, corneal inflammation or ulceration, corneal thickening or corneal perforation.

During the first 60 days of pregnancy, both too high or too low vitamin A levels may be associated with an increased risk of foetal malformation. Therefore, pregnancy should be excluded before initiating Amvuttra and women of childbearing potential should practise effective contraception (see «Pregnancy, lactation»). If a woman intends to become pregnant, Amvuttra and vitamin A

supplementation should be discontinued and serum vitamin A levels should be monitored and have returned to normal before conception is attempted. Serum vitamin A levels may remain reduced for more than 12 months after the last dose of Amvuttra.

In the event of an unplanned pregnancy, Amvuttra should be discontinued (see «Pregnancy/ lactation»). No recommendation can be given whether to continue or discontinue vitamin A supplementation during the first trimester of an unplanned pregnancy. If vitamin A supplementation is continued, the daily dose should not exceed 3000 IU per day, due to the lack of data supporting higher doses. Thereafter, vitamin A supplementation of 2500 IU to 3000 IU per day should be resumed in the second and third trimesters if serum vitamin A levels have not yet returned to normal, because of the increased risk of vitamin A deficiency in the third trimester.

It is not known whether vitamin A supplementation in pregnancy will be sufficient to prevent vitamin A deficiency if the pregnant female continues to receive Amvuttra. However, increasing vitamin A supplementation to above 3000 IU per day during pregnancy is unlikely to correct plasma retinol levels due to the mechanism of action of Amvuttra and may be harmful to the mother and foetus.

Other ingredients

This medicinal product contains less than 1 mmol sodium (23 mg) per mL, that is to say essentially 'sodium-free'.

Interactions

No clinical interaction studies have been performed. Vutrisiran is not expected to cause interactions or to be affected by inhibitors or inducers of cytochrome P450 enzymes, or to modulate the activity of transporters. Therefore, vutrisiran is not expected to have clinically significant interactions with other medicinal products.

Pregnancy, lactation

Women of child-bearing age

Treatment with Amvuttra reduces serum levels of vitamin A. Both too high or too low vitamin A levels may be associated with an increased risk of foetal malformation. Therefore, pregnancy should be excluded before initiation of treatment and women of childbearing potential should use effective contraception. If a woman intends to become pregnant, Amvuttra and vitamin A supplementation should be discontinued and serum vitamin A levels should be monitored and have returned to normal before conception is attempted (see section *«Warnings and Precautions»*). Serum vitamin A levels may remain reduced for more than 12 months after the last dose of treatment.

Pregnancy

There are no data on the use of Amvuttra in pregnant women. Animal studies are insufficient with respect to reproductive toxicity (see section *«Preclinical Data»*). Due to the potential teratogenic risk arising from unbalanced vitamin A levels, Amvuttra should not be used during pregnancy. As a precautionary measure, vitamin A (see section *«Warnings and Precautions»*) and TSH (thyroid stimulating hormone) levels should be obtained early in pregnancy. Close monitoring of the foetus should be carried out, especially during the first trimester.

Lactation

It is unknown whether vutrisiran is excreted in human milk. There is insufficient information on the excretion of vutrisiran in animal milk (see section «*Preclinical Data*»).

A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from Amvuttra, taking into account the benefit of breast feeding for the child and the benefit of therapy for the woman.

Fertility

There are no data on the effects of Amvuttra on human fertility. No impact on male or female fertility was detected in animal studies (see section *«Preclinical Data»*).

Effects on ability to drive and use machines

Amvuttra has no or negligible influence on the ability to drive and use machines.

Undesirable effects

List of adverse reactions

The safety profile of Amvuttra was characterised based on the data from randomised-controlled phase 3 clinical studies. Adverse reactions reported in the pooled dataset of HELIOS-A and HELIOS-B studies are presented in Table 1. The adverse reactions are presented as MedDRA preferred terms and under the MedDRA System Organ Class (SOC). The frequency of the adverse reactions is expressed according to the following category: "common" (≥1/100, <1/10).

Table 1: Adverse reactions reported for Amvuttra

System Organ Class	Adverse reaction	Frequency
General disorders and administration	Injection site reaction ^a	Common
site conditions		
Investigations	Blood alkaline phosphatase	Common
	increased	
	Alanine transaminase increased	Common

Product information for human medicinal products

System Organ Class	Adverse reaction	Frequency			
^a Reported symptoms included bruising, erythema, pain, pruritus, and warmth. Injection site					
reactions were mild, transient, and did not lead to treatment discontinuation					

Description of specific adverse reactions and additional information

Liver function tests

In the HELIOS-B study, 97 (30%) of patients treated with Amvuttra and 78 (24%) patients treated with placebo had a mild increased alanine aminotransferase (ALT) greater than the ULN and less than or equal to 3×ULN. All patients treated with Amvuttra with mild ALT elevations were asymptomatic and the majority had normalization of ALT levels with continued dosing.

Immunogenicity

In the HELIOS-A and HELIOS-B studies, 4 (3.3%) and 1 (0.3%) Amvuttra-treated patients, respectively, developed anti-drug antibodies (ADA). In both studies, ADA titres were low and transient with no evidence of an effect on clinical efficacy, safety, or pharmacokinetic or pharmacodynamic profiles of vutrisiran.

Reporting suspected adverse reactions after authorisation of the medicinal product is very important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions online via the ElViS portal (Electronic Vigilance System). You can obtain information about this at www.swissmedic.ch.

Overdose

In case of overdose, it is recommended that the patient be monitored as medically indicated for any signs or symptoms of adverse reactions and appropriate symptomatic treatment be instituted.

Properties/Effects

ATC code

N07XX18

Mechanism of action

Amvuttra contains vutrisiran, a chemically stabilized double-stranded small interfering ribonucleic acid (siRNA) that specifically targets variant and/or wild-type transthyretin (*TTR*) messenger RNA (mRNA) and is covalently linked to a ligand containing three *N* - acetylgalactosamine (GalNAc) residues to enable delivery of the siRNA to hepatocytes.

Through a natural process called RNA interference (RNAi), vutrisiran causes the catalytic degradation of *TTR* mRNA in the liver, resulting in the reduction of serum levels of variant and wild-type amyloidogenic TTR protein thus reducing the deposition of TTR amyloid in tissues.

Pharmacodynamics

In HELIOS-A, mean serum TTR was rapidly reduced as early as Day 22, with mean near to steady state TTR reduction of 73% by Week 6. With repeat dosing of 25 mg once every 3 months, mean reductions of serum TTR after 9 and 18 months of treatment were 83% and 88%, respectively. Similar TTR reductions were observed regardless of genotype (V30M or non-V30M), prior TTR stabiliser use, weight, sex, age, or race.

In HELIOS-B, the mean serum TTR reduction profile was consistent with that observed in HELIOS-A, and similar across all subgroups studied (age, sex, race, body weight, anti-drug antibody [ADA] status, ATTR disease type [wild-type or hereditary], NYHA class, and baseline tafamidis use). Serum TTR is a carrier of retinol binding protein 4, which is the principal carrier of vitamin A in the blood. In HELIOS-A, Amvuttra decreased serum vitamin A levels with mean steady state peak and trough reductions of 70% and 63%, respectively (see sections «*Warnings and Precautions*») and «*Interactions*»). In HELIOS-B, serum vitamin A reductions were consistent with those observed in HELIOS-A.

In HELIOS-B, NT-proBNP and Troponin I, cardiac biomarkers associated with heart failure, demonstrated relative stability in Amvuttra-treated patients for median change from baseline through Month 30 in the overall population (NT-proBNP: 9% increase; Troponin I: 10% decrease) while levels in placebo patients demonstrated worsening (NT-proBNP: 52% increase; Troponin I: 22% increase). Consistent trends were observed in the monotherapy population.

In HELIOS-B, centrally-assessed echocardiograms showed reduction relative to placebo favouring Amvuttra in LV wall thickness (LS mean difference: -0.4 mm [95% CI -0.8, -0.0]) and longitudinal strain (LS mean difference: -1.23% [95% CI -1.73, -0.73]) in the overall population. Results in the monotherapy population were consistent.

Clinical efficacy

hATTR amyloidosis with polyneuropathy

The efficacy of Amvuttra was studied in a global, randomised, open-label clinical study (HELIOS-A) in adult patients with hATTR-PN. Patients were randomised 3:1 to receive 25 mg of Amvuttra (N=122) subcutaneously once every 3 months, or 0.3 mg/kg patisiran (N=42) intravenously once every 3 weeks. The treatment period of the study was conducted over 18 months with two analyses at Month 9 and at Month 18. Ninety-seven percent (97%) of Amvuttra-treated patients completed at least 18 months of the assigned treatments (vutrisiran or patisiran). Efficacy assessments were based on a

comparison of the vutrisiran arm of the study with an external placebo group (placebo arm of the APOLLO Phase 3 study) comprised of a similar population of patients with hATTR-PN. Assessment of non-inferiority of serum TTR reduction was based on comparison of the vutrisiran arm to the within-study patisiran arm.

Of the patients who received Amvuttra, the median patient age at baseline was 60 years (range 34 to 80 years), 38% were ≥ 65 years old, and 65% of patients were male. Twenty-two (22) different TTR variants were represented: V30M (44%), T60A (13%), E89Q (8%), A97S (6%), S50R (4%), V122I (3%), L58H (3%), and Other (18%). Twenty percent (20%) of patients had the V30M genotype and early onset of symptoms (< 50 years old). At baseline, 69% of patients had stage 1 disease (unimpaired ambulation; mild sensory, motor, and autonomic neuropathy in the lower limbs), and 31% had stage 2 disease (assistance with ambulation required; moderate impairment of the lower limbs, upper limbs, and trunk). There were no patients with stage 3 disease. Sixty-one percent (61%) of patients had prior treatment with TTR tetramer stabilisers. According to the New York Heart Association (NYHA) classification of heart failure, 9% of patients had class I and 35% had class II. Thirty-three percent (33%) of patients met pre-defined criteria for cardiac involvement (baseline LV wall thickness ≥ 13 mm with no history of hypertension or aortic valve disease).

The primary efficacy endpoint was the change from baseline to Month 18 in modified Neuropathy Impairment Score +7 (mNIS+7). This endpoint is a composite measure of motor, sensory, and autonomic neuropathy including assessments of motor strength, reflexes, quantitative sensory testing, nerve conduction studies, and postural blood pressure, with the score ranging from 0 to 304 points, where an increasing score indicates worsening impairment.

The change from baseline to Month 18 in Norfolk Quality of Life-Diabetic Neuropathy (QoL-DN) total score was assessed as a secondary endpoint. The Norfolk QoL-DN questionnaire (patient-reported) includes domains relating to small fibre, large fibre, and autonomic nerve function, symptoms of polyneuropathy, and activities of daily living, with the total score ranging from -4 to 136, where increasing score indicates worsening quality of life.

Other secondary endpoints included gait speed (10-meter walk test), nutritional status (mBMI), and patient-reported ability to perform activities of daily living and social participation (Rasch-Built Overall Disability Scale [R-ODS]).

Treatment with Amvuttra in the HELIOS-A study demonstrated statistically significant improvements in all endpoints (Table 2 and Figure 1) measured from baseline to Month 9 and 18, compared to the external placebo group of the APOLLO study (all p < 0.0001).

The time-averaged trough TTR percent reduction through Month 18 was 84.7% for vutrisiran and 80.6% for patisiran. The percent reduction in serum TTR levels in the vutrisiran arm was non-inferior (according to predefined criteria) to the within-study patisiran arm through Month 18 with a median difference of 5.3% (95% CI 1.2%, 9.3%).

Table 2: Summary of clinical efficacy results from the HELIOS-A study

	Baseline, Mean (SD)		Change from Baseline, LS Mean (SEM)		Amvuttra -Placebo ^b	n value
Endpoint ^a					Treatment	
	Amvuttra	Placebo ^b	A	Disastab	Difference,	<i>p</i> -value
	N=122	N=77	Amvuttra	Placebob	LS Mean (95% CI)	
Month 9		1		II.		
mNIS+7°	60.6 (36.0)	74.6 (37.0)	-2.2 (1.4)	14.8 (2.0)	-17.0	n<0.0001
IIINIOT <i>I</i>	60.6 (36.0)	74.6 (37.0)	-2.2 (1.4)	14.6 (2.0)	(-21.8, -12.2)	<i>p</i> <0.0001
Norfolk	47.1 (26.3)	55.5 (24.3) -3.3 (2 2 (1 7)	12.0 (2.2)	-16.2	p<0.0001
QoL-DN ^c	47.1 (20.3)		-3.3 (1.7)	12.9 (2.2)	(-21.7, -10.8)	
10-meter					0.13	
walk test	1.01 (0.39)	0.79 (0.32)	0 (0.02)	-0.13 (0.03)	(0.07, 0.19)	<i>p</i> <0.0001
(m/sec) ^d					(0.07, 0.19)	
Month 18		1		II.		
mNIS+7°	60.6 (36.0)	74.6 (37.0)	-0.5 (1.6)	28.1 (2.3)	-28.5	p<0.0001
IIIIIII	60.6 (36.0)	74.6 (37.0)	-0.5 (1.0)	20.1 (2.3)	(-34.0, -23.1)	μ~υ.υυυ1
Norfolk	47.1 (26.3)	55.5 (24.3)	-1.2 (1.8)	19.8 (2.6)	-21.0	p<0.0001
QoL-DN ^c	47.1 (20.5)	33.3 (24.3)			(-27.1, -14.9)	
10-meter					0.24	
walk test	1.01 (0.39)	0.79 (0.32)	-0.02 (0.03)	-0.26 (0.04)	(0.15, 0.33)	<i>p</i> <0.0001
(m/sec) ^d					(0.13, 0.33)	
mBMIe	1057.5 (233.8)	989.9 (214.2)	25.0 (9.5)	-115.7 (13.4)	140.7	p<0.0001
IIIDIVII	1007.0 (200.6)	303.3 (214.2)	20.0 (8.0)	-113.7 (13.4)	(108.4, 172.9)	١٠٥٠٥٠ م
R-ODS ^f	34.1 (11.0)	29.8 (10.8)	-1.5 (0.6)) -9.9 (0.8)	8.4	p<0.0001
11-003		29.0 (10.0)	-1.5 (0.6)		(6.5, 10.4)	

Abbreviations: CI=confidence interval; LS mean=least squares mean; mBMI=modified body mass index; mNIS=modified Neuropathy Impairment Score; QoL-DN=Quality of Life - Diabetic Neuropathy; SD=standard deviation; SEM=standard error of the mean

^a All Month 9 endpoints analyzed using the analysis of covariance (ANCOVA) with multiple imputation (MI) method and all Month 18 analyzed using the mixed-effects model for repeated measures (MMRM)

^b External placebo group from APOLLO randomised controlled study

[°] A lower number indicates less impairment/fewer symptoms

^d A higher number indicates less disability/less impairment

^e mBMI: body mass index (BMI; kg/m²) multiplied by serum albumin (g/L); a higher number indicates better nutritional status.

^f A higher number indicates less disability/less impairment.

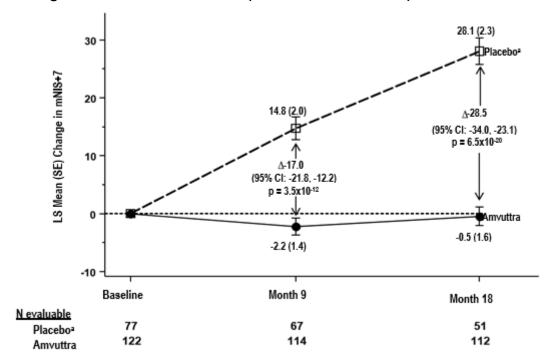


Figure 1: Change from Baseline in mNIS+7 (Month 9 and Month 18)

A decrease in mNIS+7 indicates improvement

 Δ indicates between-group treatment difference, shown as the LS mean difference (95% CI) for AMVUTTRA –external placebo

All Month 9 endpoints analyzed using the analysis of covariance (ANCOVA) with multiple imputation (MI) method and all Month 18 analyzed using the mixed-effects model for repeated measures (MMRM)

^a External placebo group from APOLLO randomised controlled study

Patients receiving Amvuttra experienced similar benefit relative to placebo in mNIS+7 and Norfolk QoL-DN total score at Month 9 and Month 18 across all subgroups including age, sex, race, region, NIS score, V30M genotype status, prior TTR stabiliser use, disease stage, and patients with or without pre-defined criteria for cardiac involvement.

The N-terminal prohormone-B-type natriuretic peptide (NT-proBNP) is a prognostic biomarker of cardiac dysfunction. NT-proBNP baseline values (geometric mean) were 273 ng/L and 531 ng/L in Amvuttra-treated and placebo-treated patients, respectively. At Month 18, the geometric mean NT-proBNP levels decreased by 6% in Amvuttra patients, while there was a 96% increase in placebo patients.

Centrally-assessed echocardiograms showed changes in LV wall thickness (LS mean difference: -0.18 mm [95% CI -0.74, 0.38]) and longitudinal strain (LS mean difference: -0.4% [95% CI -1.2, 0.4]) with Amvuttra treatment relative to placebo.

wtATTR or hATTR amyloidosis with cardiomyopathy

The efficacy of Amvuttra was demonstrated in a global, randomised, double-blind, placebo-controlled clinical study (HELIOS-B) in adult patients with ATTR-CM. Patients were randomized 1:1 to receive 25 mg of Amvuttra subcutaneously once every 3 months, or matching placebo. At baseline, 40% of patients were receiving treatment with tafamidis. Treatment assignment was stratified by baseline tafamidis use, ATTR disease type (wtATTR or hATTR amyloidosis), and by baseline severity of disease and age (NYHA Class I or II and age < 75 years versus all other).

Of the patients who received Amvuttra, at baseline, the median patient age was 77 years (range 45 to 85 years) and 92% were male. Eighty five percent (85%) of patients were Caucasian, 7% were Black or African American, 6% were Asian. Eighty nine percent (89%) of patients had wtATTR amyloidosis and 11% had hATTR amyloidosis. According to the NYHA classification of heart failure (HF), 15% of patients had Class I, 77% had Class II, and 8% had Class III and were NAC ATTR disease stage 1 or 2. Patient demographics and baseline disease characteristics were similar between the treatment groups.

The primary efficacy endpoint was the composite outcome of all-cause mortality and recurrent CV events (CV hospitalisations and urgent heart failure [UHF] visits) during the double-blind treatment period of up to 36 months, evaluated in the overall population and in the monotherapy population (defined as patients not receiving tafamidis at study baseline).

Amvuttra led to significant reductions in the risk of all-cause mortality and recurrent CV events compared to placebo in the overall and monotherapy populations of 28.2% and 32.8%, respectively (Table 3). Approximately 77% of all deaths in HELIOS-B were CV-related. The rate of both CV deaths and non-CV deaths was lower in Amvuttra-treated patients compared to placebo. Of the total number of CV events, 87.9% were CV hospitalisations, and 12.1% were UHF visits. A Kaplan-Meier curve illustrating time to first CV event or all-cause mortality is presented in Figure 2.

Both components of the primary composite endpoint individually contributed to the treatment effect in the overall population and monotherapy population (Table 3).

In the secondary endpoint analysis of all-cause mortality including data up to Month 42, incorporating the double-blind period and up to an additional 6 months of survival data for all patients, Amvuttra led to a 35.5% reduction in the risk of death relative to placebo in the overall population (hazard ratio: 0.645; 95% CI: 0.463, 0.898; p=0.0098), and to a 34.5% reduction in the monotherapy population (hazard ratio: 0.655; 95% CI: 0.440, 0.973; p=0.0454).

Table 3: Primary composite endpoint and its individual components in HELIOS-B

Endpoint		Overall population		Monotherapy population	
		Amvuttra (N=326)	Placebo (N=328)	Amvuttra (N=196)	Placebo (N=199)
Primary composite	Hazard Ratio (95% CI) ^b	0.718 (0.55	5, 0.929)	0.672 (0.4	87, 0.929)
endpoint ^a	<i>p</i> -value ^b	0.0118		0.0162	
	Components of the P	rimary Compo	site Endpoir	nt	
All-cause mortality	Hazard Ratio (95% CI)º	0.694 (0.490, 0.982) 0.705		0.705 (0.40	67, 1.064)
hospitalisations	Relative Rate Ratio (95% CI) ^d	0.733 (0.61	0, 0.882)	0.676 (0.53	33, 0.857)

Abbreviations: CI=confidence interval; CV=cardiovascular; UHF=urgent heart failure

Heart transplantation and left ventricular assist device placement are treated as death. Deaths after study discontinuation are included in the all-cause mortality component analysis.

^a Primary composite endpoint defined as: composite outcome of all-cause mortality and recurrent CV events. Primary analysis included at least 33 months (and up to 36 months) follow-up on all patients.

 $^{^{}m b}$ Hazard Ratio (95% CI) and p-value are based on a modified Andersen-Gill model.

^cHazard Ratio (95% CI) is based on a Cox proportional hazard model.

d Relative rate ratio (95% CI) is based on a Poisson regression model.

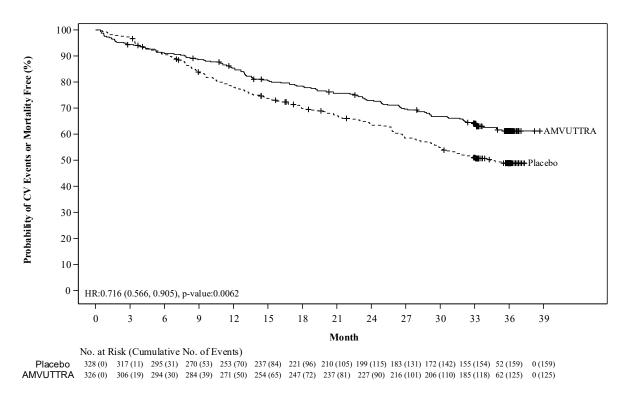


Figure 2: Time to First CV Event or All-Cause Mortality (Overall population)

Abbreviation: CI=confidence interval; CV=cardiovascular; HR = hazard ratio.

Heart transplantation and left ventricular assist device placement are treated as death. Kaplan-Meier curves are adjusted for baseline disease characteristics using the inverse probability of treatment weighting method. HR and 95% CI are based on a Cox proportional hazard model, and p-value is based on log-rank test.

Results from the subgroup analysis for the primary composite endpoint favoured Amvuttra across all prespecified subgroups in the overall population and the monotherapy population (Figure 3).

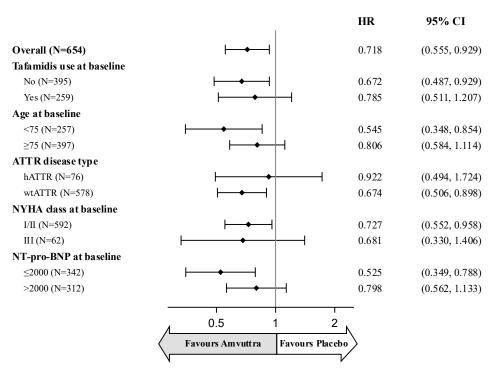


Figure 3: Subgroup Analyses of the Primary Composite Endpoint (Overall Population)

Abbreviations: ATTR = transthyretin amyloidosis; CI = confidence interval; hATTR = hereditary transthyretin amyloidosis; HR = hazard ratio; NT-proBNP = N-terminal prohormone of B-type natriuretic peptide; NYHA = New York Heart Association; wtATTR = wild-type transthyretin amyloidosis.

HR and 95% CI are based on modified Andersen-Gill model analyses.

The treatment effects of Amvuttra on functional capacity, patient-reported health status and quality of life, and heart failure symptom severity were assessed by the change from baseline to Month 30 in 6-Minute Walk Test (6-MWT), the Kansas City Cardiomyopathy Questionnaire-Overall Summary (KCCQ-OS) score and NYHA class, respectively. The KCCQ-OS is composed of four domains including Total Symptoms (Symptom Frequency and Symptom Burden), Physical Limitation, Quality of Life, and Social Limitation. The Overall Summary score and domain scores range from 0 to 100, with higher scores representing better health status.

A statistically significant treatment effect favouring Amvuttra was observed for 6-MWT distance, KCCQ-OS score, and stable or improved NYHA class, in both the overall population and monotherapy population (Table 4), with consistent results across all subgroups studied. The treatment effect on KCCQ-OS score was consistent across all four domain scores.

Table 4. Change from Baseline in 6-MWT distance, KCCQ-OS score and NYHA class at Month 30

	Overall population		Monotherapy population		
	Amvuttra	Placebo	Amvuttra	Placebo	
	(N=326)	(N=328)	(N=196)	(N=199)	
6-MWT (metres)		I	1		
Baseline Mean (SD)	372 (104)	377 (96)	363 (103)	373 (98)	
Change from baseline to	45 (5)	70 (5)	00 (7)	-92 (6)	
Month 30, LS Mean (SE)ª	-45 (5)	-72 (5)	-60 (7)		
Treatment Difference from	26 (1	3, 40)	32 (14, 50)		
Placebo, LS Mean (95% CI)					
<i>p</i> -value ^{a,b}	<0.0	0001	0.0005		
KCCQ-OS (points)					
Baseline Mean (SD)	73 (19)	72 (20)	70 (20)	70 (21)	
Change from baseline to	40 (4)	45 (4)	11 (0)	40 (2)	
Month 30, LS Mean (SE) ^a	-10 (1)	-15 (1)	-11 (2)	-19 (2)	
Treatment Difference from	6 (2, 9)		9 (4, 13)		
Placebo, LS Mean (95% CI)					
<i>p</i> -value ^{a,b}	0.00	008	0.0003		
NYHA Class					
% of patients with stable or					
improved NYHA class at	68	61	66	56	
Month 30					
Difference from Placebo, (%) 9 (1, 1		16)	13 (3, 22)		
(95% CI) ^c					
<i>p</i> -value ^c	0.0217		0.0121		
			1		

Abbreviations: 6-MWT = 6-minute walk test; KCCQ-OS = Kansas City Cardiomyopathy Questionnaire, LS = least squares;

CI = confidence interval; SD = Standard deviation; SE = Standard Error; NYHA = New York Heart Association

^a For assessment missing because of death (including heart transplantation and left ventricular assist device placement), and inability to walk as the result of ATTR disease progression (applicable to 6-MWT only), data were imputed from resampling of the worst 10% of observed changes.

^b Estimated from the MMRM (mixed-effect model repeated measures) model.

^c Based on Cochran-Mantel-Haenszel method.

Paediatrics

Swissmedic has waived the obligation to submit the results of studies with vutrisiran in all subsets of the paediatric population in hATTR amyloidosis (see section «Dosage/Administration» for information on paediatric use).

Pharmacokinetics

The pharmacokinetic properties of Amvuttra were characterised by measuring the plasma and urine concentrations of vutrisiran.

Absorption

Following subcutaneous administration, vutrisiran is rapidly absorbed with a time to maximum plasma concentration (t_{max}) of 3.0 (range: 2.0 to 6.5) hours. At the recommended dosing regimen of 25 mg once every 3 months subcutaneously, the mean (% coefficient of variation [%CV]) steady state peak concentrations (C_{max}), and area under the concentration time curve from 0 to 24 hours (AUC₀₋₂₄) were 0.12 µg/mL (64.3%), and 0.80 µg·h/mL (35.0%), respectively. There was no accumulation of vutrisiran in plasma after repeated quarterly dosing.

Distribution

Vutrisiran is greater than 80% bound to plasma proteins over the concentration range observed in humans at the dose of 25 mg once every 3 months subcutaneously. Vutrisiran plasma protein binding was concentration-dependent and decreased with increasing vutrisiran concentrations (from 78% at $0.5~\mu g/mL$ to 19% at 50 $\mu g/mL$). The population estimate for the apparent central compartment volume of distribution (Vd/F) of vutrisiran in humans was 10.2~L (% Relative standard error [RSE]=5.71%). Vutrisiran distributes primarily to the liver after subcutaneous dosing.

Metabolism

Vutrisiran is metabolised by endo- and exo-nucleases to short nucleotide fragments of varying sizes within the liver. There were no major circulating metabolites in humans. *In vitro* studies indicate that vutrisiran does not undergo metabolism by CYP450 enzymes.

Elimination

Following a 25 mg single subcutaneous dose, the median apparent plasma clearance was 21.4 (range: 19.8, 30.0) L/h. The median terminal elimination half-life ($t_{1/2}$) of vutrisiran was 5.23 (range: 2.24, 6.36) hours. After a single subcutaneous dose of 5 to 300 mg, the mean fraction of unchanged active substance eliminated in urine ranged from 15.4 to 25.4% and the mean renal clearance ranged from 4.45 to 5.74 L/h for vutrisiran.

Linearity/non-linearity

Following single subcutaneous doses over the 5 to 300 mg dose range, vutrisiran C_{max} was shown to be dose proportional while area under the concentration-time curve from the time of dosing extrapolated to infinity (AUC_{inf}) and area under the concentration-time curve from the time of dosing to the last measurable concentration (AUC_{last}) were slightly more than dose proportional.

Pharmacokinetic/pharmacodynamic relationship(s)

Population pharmacokinetic/pharmacodynamic analyses in healthy subjects and patients with hATTR amyloidosis (n=202) showed a dose-dependent relationship between predicted vutrisiran liver concentrations and reductions in serum TTR. The model-predicted median steady state peak, trough, and average TTR reductions were 88%, 86%, and 87%, respectively, confirming minimal peak-to-trough variability across the 3-month dosing interval. Covariate analysis indicated similar TTR reduction in patients with mild-to-moderate renal impairment or mild hepatic impairment, as well as by sex, race, prior use of TTR stabilisers, genotype (V30M or non-V30M), age and weight.

Kinetics in specific patient groups

Gender and race

Clinical studies did not identify significant differences in steady state pharmacokinetic parameters or TTR reduction according to gender or race.

Hepatic impairment

Clinical studies indicated no impact of mild (total bilirubin \leq 1 x ULN and AST > 1 x ULN, or total bilirubin > 1.0 to 1.5 x ULN and any AST) or moderate (total bilirubin > 1.5 to 3 × ULN and any AST) hepatic impairment on vutrisiran exposure or TTR reduction compared to patients with normal hepatic function. Vutrisiran has not been studied in patients with severe hepatic impairment.

Renal impairment

Clinical studies indicated no impact of mild or moderate renal impairment (eGFR \geq 30 to < 90 mL/min/1.73 m²) on vutrisiran exposure or TTR reduction compared to subjects with normal renal function. Vutrisiran has not been studied in patients with severe renal impairment or end-stage renal disease.

Elderly patients

In the HELIOS-A study, 46 (38%) patients treated with vutrisiran were \geq 65 years old and of these 7 (5.7%) patients were \geq 75 years old. In the HELIOS-B study, 299 (91.7%) patients treated with vutrisiran were \geq 65 years old, with a median age of 77.0 years, and of these 203 (62.3%) were

≥75 years old. There were no significant differences in steady state pharmacokinetic parameters or TTR reduction.

Preclinical data

Repeated once-monthly subcutaneous administration of vutrisiran at ≥ 30 mg/kg in monkeys produced the expected sustained reductions of circulating TTR (up to 99%) and vitamin A (up to 89%) without any apparent toxicological findings.

Following once monthly repeated dosing for up to 6 months in rats and 9 months in monkeys, the mild and consistent non-adverse histological changes in liver (hepatocytes, Kupffer cells), kidneys (renal tubules), lymph nodes and injection sites (macrophages) reflected the principal distribution and accumulation of vutrisiran. However, no toxicities were identified at up to more than 1000- and 3000-fold higher plasma AUC, when normalised to quarterly dosing and compared to the anticipated exposure at the maximum recommended human dose [MRHD].

Genotoxicity and Carcinogenicity

Vutrisiran did not exert any genotoxic potential in vitro and in vivo.

Vutrisiran was not carcinogenic in rats and in male mice. In female mice dosed once monthly with vutrisiran at 3, 9, or 18 mg/kg, a statistically significant dose-dependent trend for combined hepatocellular adenomas and carcinomas was observed with unknown relevance for humans. The carcinogenic potential of vutrisiran is considered low if all toxicity data are taken into account. Reproductive toxicity

Vutrisiran is not pharmacologically active in rats and rabbits, which limits the predictivity of these investigations. Nevertheless, a single dose of a rat-specific orthologue of vutrisiran did not impact on fertility and early embryonic development in a combined study in rats.

Weekly subcutaneous administrations of vutrisiran did not affect fertility and early embryonic development at more than 300-times the normalised MRHD In an embryo-foetal study with daily subcutaneous vutrisiran administration in pregnant rats, adverse effects on maternal body weight, food consumption, increased premature delivery and post-implantation loss were observed with a maternal NOAEL of 10 mg/kg/day that was more than 300-times the normalised MRHD of 0.005 mg/kg/day. Based on an adverse reduction in foetal body weights and increased skeletal variations at ≥10 mg/kg/day, the foetal NOAEL of vutrisiran was 3 mg/kg/day which is 97-times the normalised MRHD.

In an embryo-foetal development study in pregnant rabbits, no adverse effects on embryo-foetal development were observed at \leq 30 mg/kg/day vutrisiran, which is more than 1900-times the normalised MRHD.

In a prenatal-postnatal development study, subcutaneous vutrisiran administration on every 6th day had no effect on growth and development of the offspring with a NOAEL of 20 mg/kg, which was more than 90-times the normalised MRHD.

Other information

Incompatibilities

In the absence of compatibility studies, this medicinal product must not be mixed with other medicinal products.

Shelf life

Do not use this medicine after the expiry date ("EXP") stated on the pack.

Special precautions for storage

Do not store above 30°C. Do not freeze.

Keep out of the reach of children.

Instructions for handling

Please refer to the Annex.

Authorisation number

69074

Packs

AMVUTTRA® 25 mg, solution for injection in pre-filled syringe (Type I glass) with stainless steel 29-gauge needle with a needle shield.

Each pack contains 1 pre-filled syringe [B].

Marketing authorisation holder

Alnylam Switzerland GmbH, Zug

Date of revision of the text

October 2025

ANNEX: Instructions for use

Amvuttra 25 mg solution for injection in pre-filled syringe vutrisiran

Read these instructions before using this pre-filled syringe.

What is a pre-filled syringe?

The pre-filled syringe (referred to as the "syringe") is disposable and for single-use only.

Route and method of administration

Each carton contains one Amvuttra single use syringe. Each Amvuttra syringe contains 25 mg of vutrisiran for injection under the skin (subcutaneous injection) once every 3 months.

Your doctor or healthcare provider will show you and/or your caregiver how to prepare and inject a dose of Amvuttra before you do it yourself. Contact your healthcare professional or doctor for further guidance and support if needed.

Keep these instructions until the syringe has been used.

How to Store Amvuttra?

Do not store above 30°C.

Do not freeze.

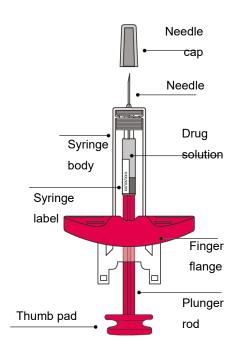
Keep this medicine out of the sight and reach of children.

Important Warnings

Do not use if the carton is damaged or shows signs of tampering.

Do not use the syringe if it was dropped on a hard surface.

Do not touch the plunger rod until ready to inject.


Do not remove the needle cap until just before injection.

Do not recap the syringe at any time.

How the syringe looks before and after use:

Before Use

After Use

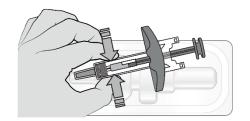
Step 1: Gather Supplies

Gather and place the following supplies (not supplied) on a clean flat surface:

- Alcohol wipe
- Gauze pad or cotton ball
- Adhesive bandage
- Sharps container

Step 2: Prepare the Syringe

If stored cold, allow the syringe to warm to room temperature for at least 30 minutes before use.


Do not warm syringe in any other way, e.g., microwave, hot water, or near other heat sources.

Remove the syringe from the packaging by gripping the syringe body.

Do not touch plunger rod until ready to inject.

Do not use the syringe if it was dropped on a hard surface.

Do not remove the needle cap until just before injection.

Step 3: Inspect Syringe

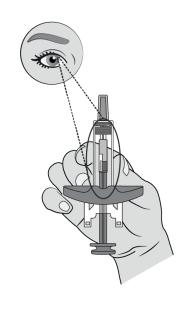
Check:

- ✓ Syringe is not damaged, such as cracked or leaking.
- ✓ Needle cap is intact and attached to the syringe.
- ✓ The drug solution in the syringe is clear, and colourless-to-yellow.
- ✓ "Amvuttra 25 mg" appears on the syringe label.
- ✓ Expiration date on syringe label.

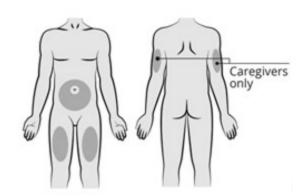
It is normal to see air bubbles inside the syringe.

Do not use the syringe if any issues are found while checking the syringe and drug solution.

Do not use if the expiry date has passed.


Do not use if the drug solution contains particulate matter or if it is cloudy or discoloured.

Contact healthcare provider if any issues are found.


Step 4: Choose Site for Injection

Choose an injection site from the following areas:

- Abdomen, except for the 5 cm area around the belly button (navel).
- Front of the thighs.
- If someone else is giving the injection, then the back of the upper arms can be used as well.

Do not inject into areas of skin that are tender, red, swollen, bruised or hard or within 5 cm of the belly button (navel).

Step 5: Prepare for Injection

Wash hands with soap and water and dry thoroughly with a clean towel.

Clean the chosen injection site using an alcohol wipe.

Allow the skin to air dry before injecting. Avoid touching or blowing on the injection site after cleaning.

Step 6: Remove Needle Cap

Hold the syringe body with one hand.

Pull the needle cap straight off with the other hand and dispose of needle cap immediately.

It is normal to see a drop of liquid at the tip of the needle.

Do not touch the needle or let it touch any surface.

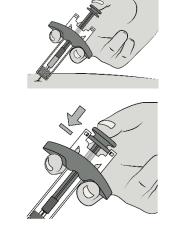
Do not recap the syringe.

Do not pull-on plunger rod.

Do not use the syringe if it was dropped on a hard surface.

Step 7: Insert Needle

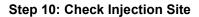
Using the free hand, gently pinch the cleaned skin around the injection site to create a bump for the injection.


Fully insert the needle into the pinched skin at a 45-90° degree angle.

Using the thumb pad, push the plunger rod while grasping the finger flange.

Push the plunger rod all the way down, as far as it will go, to inject all of the drug solution.

The plunger rod must be pressed **all the way down** to administer the dose.


Step 9: Release Plunger Rod

Release the plunger rod to cover the needle.

Remove syringe from skin.

Do not block plunger rod movement.

Do not pull down on the needle shield. The needle shield automatically covers the needle.

There may be a small amount of blood or liquid at the injection site.

If so, apply pressure over the injection site with a gauze pad or cotton ball until any bleeding stops.

Avoid rubbing the injection site.

Step 11: Dispose of Syringe

Immediately dispose of the used syringe into a sharps container.

Only use a sharps container to dispose of syringes.

