

# Nitrosamine mittels GC-MS/MS

# 1 Zweck und Anwendungsbereich

Die Prüfvorschrift dient zur Prüfung auf Nitrosamine mittels GC-MS/MS. Mit der Prüfvorschrift können die folgenden Nitrosamine in einer Konzentration von 15 ppb bestimmt werden:

| Substanz                     | Abkürzung                     |
|------------------------------|-------------------------------|
| N-Nitrosodimethylamine       | NDMA                          |
| N-Nitrosodiethylamine        | NDEA                          |
| Ethylisopropylnitrosamine    | EIPNA                         |
| N-Nitroso-di-iso-propylamine | DIPNA                         |
| N-Nitroso-di-n-propylamine   | DPNA                          |
| N-Nitroso-di-n-butylamine    | DBNA (nur Gehaltsabschätzung) |

Der Fokus der Methode liegt auf der Wirkstoffgruppe der Sartane, weshalb nur Sartan-Präparate (Valsartan, Losartan, Irbesartan, Olmesartan, Candesartan) validiert wurden. Bei anderen API oder Fertigprodukten müssen in-situ Validierungen mit dem Schwerpunkt Extraktion, Spezifität und Bestimmungsgrenze durchgeführt werden. Die Daten werden in der Beilage 31\_PV\_171\_B01 erfasst.

Für DBNA liefert die Methode ungenügende Wiederfindungen. In Falle einer Detektion von DBNA ist eine Quantifizierung über eine Standardaddition nötig (in-situ-Validierung).

# 2 Prinzip der Methode

Extraktion der mit Natronlauge gelösten APIs / Fertigprodukte mit Dichlormethan und anschliessender GC-MS/MS Analyse im MRM-Modus.

## 3 Angaben zur Validierung

Siehe Validierungsbericht 31\_VA\_171 Nitrosamine mittels GC-MS/MS

#### 4 Grundlagen

 GC-MS Method for N-Nitrosodiethylamine (NDEA) in Losartan Potassium, Zhejiang Huahai Pharmaceutical (Literatur)

## 5 Definitionen und Abkürzungen

#### Siehe Glossar OMCL

| Begriff / Abkürzung | Beschreibung                     | Ergänzung                         |
|---------------------|----------------------------------|-----------------------------------|
| API                 | Active Pharmaceutical Ingredient | Aktive pharmazeutische Wirkstoffe |
| MK                  | Messkolben                       | -                                 |
| MRM                 | Multiple Reaction Monitoring     | -                                 |
| ISTD                | Interner Standard                | EMNA wird als ISTD verwendet.     |

Unterliegt nicht der Dokumentenlenkung (OMCL Swissmedic) Datum/Visum: 28.11.2019 / gs



## 6 Besondere Hinweise / Sicherheitshinweise

Nitrosamine sind potentiell kanzerogen. Es sind entsprechende Schutzvorkehrungen zu treffen.

# 7 Referenz- und Kontrollmaterial, Prüfeinrichtungen, Materialien, Chemikalien und Lösungen

#### 7.1 Referenzmaterial

| Bezeichnung                             | Gehalt /<br>Reinheit | Herst./Lieferant / ArtNr. (z.B.)     |
|-----------------------------------------|----------------------|--------------------------------------|
| N-Nitrosodimethylamine<br>(NDMA)        | 99.9 %               | Sigma / 442687                       |
| N-Nitrosoethylmethylamine (EMNA)        | 98.9 %               | LGC / DRE-C15604000                  |
| N-Nitrosodiethylamine<br>(NDEA)         | 97%                  | Toronto Research Chemicals / N525950 |
| Ethylisopropylnitrosamine (EIPNA)       | 95%                  | MuseChem / M079119                   |
| N-Nitroso-di-iso-propylamine<br>(DIPNA) | 99%                  | LGC / DRE-C15604700                  |
| N-Nitrosodi-n-propylamine<br>(DPNA)     | 99.9%                | Sigma Aldrich / 48554                |
| N-Nitrosodi-n-butylamine<br>(DBNA)      | 99.8%                | Sigma Aldrich / 442685               |

#### 7.2 Kontrollmaterial

Nicht anwendbar

## 7.3 Prüfeinrichtungen und Materialien

| Bezeichnung                            |  |
|----------------------------------------|--|
| 0662A / GC-MS/MS (Agilent 7890B_7000D) |  |

## 7.4 Chemikalien

| Bezeichnung             | Herst./Lieferant / ArtNr. (z.B.) |  |
|-------------------------|----------------------------------|--|
| Dichlormethan           | Merck / 1.06050.1000             |  |
| Natronlauge 50%         | Sigma Aldrich / 415413           |  |
| Acetonitril             | NeoFroxx / LC-5413.1             |  |
| H <sub>2</sub> O MilliQ | OMCL                             |  |



#### 7.5 Lösungen

| Bezeichnung Lösung        | Herstellung                                                                                                                                                                                                                                      | Haltbarkeit /<br>Lager-Temp. |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Nitrosamin-Stocklösungen  | Von jedem Nitrosamin werden ca. 5 mg in je einen 10 mL MK eingewogen mit Methanol gelöst und auf 10 mL verdünnt. Von jeden Nitrosamin werden zwei Lösungen (1/2) hergestellt.                                                                    | 14 Tage / 25°C               |
| Nitrosamin Mix 1 / 2      | Von jeder Nitrosamin-Lösung 1 werden 200 µL in einen 10 mL Messkolben pipettiert und mit H2O MilliQ auf 10 mL verdünnt. Eine gleiche Mixlösung wird aus den Stock-Lösungen 2 hergestellt. Die Lösung 1 wird als 1mL Aliquote bei -20°C gelagert. | 14 Tage / -20°C              |
| Spiking Lösung A 1 / 2    | 300 µL des Nitrosamin Mix 1 werden mit H2O MilliQ ad 20 mL verdünnt. Die gleiche Lösung wird aus dem Nitrosamin Mix 2 hergestellt.                                                                                                               | 14 Tage / 25°C               |
| Spiking Lösung B          | 300 μL des Nitrosamin Mix 1 werden mit H2O MilliQ ad 10 mL verdünnt.                                                                                                                                                                             | 14 Tage / 25°C               |
| ISTD-Stock-Lösung         | Ca. 5 mg EMNA werden in einen 10 mL MK eingewogen, mit Methanol gelöst und zur Marke aufgefüllt                                                                                                                                                  | 14 Tage / 25°C               |
| ISTD-Dil-Lösung           | 500 μL der ISTD-Stock-Lösung werden mit H2O MilliQ ad 10 mL verdünnt.                                                                                                                                                                            | 14 Tage / 25°C               |
| 1M NaOH-Lösung (ACN/ISTD) | 52.6 mL NaOH 50% werden in einen 1L Messkolben gegeben und mit H2O MilliQ gelöst. Zu dieser Lösung werden 100 µL ISTD-Dil-Lösung und 50 mL ACN gegeben. Anschliessend wird die Lösung mit H2O MilliQ auf 1L verdünnt.                            | 14 Tage / 25°C               |

Um Fehler bei der Einwaage oder der Verdünnung der Lösungen auszuschliessen wird die Spiking-Lösungen A im Duplikat hergestellt. Zum Vergleich der beiden Lösungen werden Blank Spikes mit je 200 µL Spiking-Lösung A (1) und Spiking Lösung A (2) hergestellt (Siehe Kapitel 9.1). Beide Lösungen werden jeweils 3-mal analysiert. Die Mittelwerte der Response (Fläche / Konzentration) der beiden 3-fach-Analysen dürfen nicht mehr als 5% voneinander abweichen.



#### 8 Vorgehen

#### 8.1 Probenaufarbeitung

Aus ca.10 Tabletten wird ein Mischmuster erstellt. Es wird die Menge Mischmuster in ein 15 mL Zentrifugenröhrchen eingewogen, die einer Wirkstoffmenge von ca. 250 mg entspricht. Es wird aber max. 1,5 g des Mischmusters eingewogen. Bei API-Mustern werden je 250 mg Wirkstoff eingewogen.

Die Einwaage wird mit 10 mL NaOH-Lösung versetzt und min. 5 min gut geschüttelt bzw. gevortext. Zu dieser Suspension werden 2.0 mL Dichlormethan gegeben und erneut für 5 min geschüttelt bzw. gevortext. Die Suspension wird min. 5 min bei ca. 10000 g zentrifugiert. Die wässrige Phase wird entfernt, damit die untere, organische Phase besser entnommen werden kann.

Für die Spikingprobe wird dieselbe Menge Mischmuster in ein 15 mL Zentrifugenröhrchen eingewogen, mit Spiking-Lösung entsprechend der Limite (30 ppb im Falle der Sartane) versetzt und mit 10 mL Natronlauge ergänzt, suspendiert und wie oben beschrieben mit Dichlormethan extrahiert.

In jeder Messserie wird eine 3 Punkte-Linearität hergestellt. Die Aufarbeitung erfolgt analog der Musteraufarbeitung mit Spiking ohne Einwaage der Probe. In der Regel werden Konzentration von 50% / 100% / 200% der Limite (15 ppb, 30 ppb und 60 ppb im Falle der Sartane) für die Kalibration verwendet. Der 100% Kalibrationsstandard in wird in regelmässigen (ca. alle 5 Muster) Abständen als Check-Standard erneut analysiert.

Bei Nitrosamingehalten über der Limite müssen zusätzliche Analysen durchgeführt werden um das Resultat zu bestätigen. Dazu wird eine zusätzliche 3-fach Aufarbeitung des Musters durchgeführt. Falls der Nitrosamingehalt ausserhalb des kalibrierten Bereiches liegt, muss die Kalibriergerade entsprechend erweitert werden.

#### 8.2 Beispielsequenz

Nach jeweils fünf Prüfmustern (spiked und unspiked) wird eine Blank Injektion gefolgt von der 100 % Linearitätslösung durchgeführt. Je nach Matrixbelastung durch die Prüfmuster können zusätzliche Blanks durchgeführt werden.

#### Beispiel:

| 1. Dichlormethan (DCM) BI | ank 13. M-000004 |
|---------------------------|------------------|
| 2. Blank Extrakt          | 14. M-000004_S   |
| 3. Lin 1 50%              | 15. M-000005     |
| 4. Lin 2 100%             | 16. M-000005_S   |
| 5. Lin 3 200%             | 17. DCM Blank    |
| 6. Blank Extrakt          | 18. Lin 2 100%   |
| 7. M-000001               | 19. DCM Blank    |
| 8. M-000001_S             | 20. M-000006     |
| 9. M-000002               | 21. M-000006_S   |
| 10. M-000002_S            | 22. M-000007     |
| 11. M-000003              | 23. M-000007_S   |
| 12. M-000003_S            |                  |



# 8.3 Geräteparameter

# **GC-Parameter**

| Säule 1 (Inlet → EPC) | VF-624ms, 30m, 0.25 mm ID, 1.4 µm Film                |                      |                   |                    |
|-----------------------|-------------------------------------------------------|----------------------|-------------------|--------------------|
| Säule 2 (EPC → MS)    | Deactivated Fused Silica, 1.35m, 0.15 mm ID.          |                      |                   |                    |
| Trägergas             | Helium                                                |                      |                   |                    |
| Fluss Säule 1         | 1.3 mL/min / Po                                       | st run -1.57 mL/r    | nin               |                    |
| Fluss Säule 2         | 1.45 mL/min / P                                       | ost run 5.34 mL      |                   |                    |
| Injektortemperatur    | 250 °C                                                |                      |                   |                    |
| Injektionsvolumen     | 3.0 μL (Draw Sp                                       | eed 75 μL/min,       | Viskosity Delay 7 | s)                 |
| Pulse Pressure        | 40 psi für 0.5 mi                                     | n                    |                   |                    |
| Purge Time            | 60 mL/min at 0.5 min                                  |                      |                   |                    |
| Gas Saver             | 20 mL/min after 1.5 min                               |                      |                   |                    |
| Liner                 | Splitless, single taper with wool (Agilent 5183-4694) |                      |                   |                    |
| Ofen-Programm         | Start Temp<br>/ °C                                    | Heizrate<br>/ °C/min | End Temp<br>/ °C  | Haltezeit<br>/ min |
|                       | 40                                                    | 0                    | 40                | 0.5                |
|                       | 40                                                    | 60                   | 140               | 2                  |
|                       | 140                                                   | 20                   | 180               | 0.5                |
|                       | 180                                                   | 30                   | 240               | 1.8                |
| Post Run Ofen         | 280°C für 2.5 min                                     |                      |                   |                    |
| Transfer Line         | 240°C                                                 |                      |                   |                    |

## **MS-Parameter**

| Ion Source            | Extractor Source        |
|-----------------------|-------------------------|
| Source Temperatur     | 230°C                   |
| Quad Temperatur       | 150°C (beide)           |
| Fixed Electron Energy | 40 eV                   |
| Acquisition Type      | MRM                     |
| Solvent Delay         | 4.5 min                 |
| Gain Factor           | 15                      |
| Collision Gas         | Stickstoff / 1.5 mL/min |
| Quench Gas            | Helium / 2.25 mL/min    |



#### **MRM Transitionen**

| Substanz | Q1    | Resolution | Q2    | Resolution | RT / min | RT Delta left | RT Delta Right | Dwell Time | CE |
|----------|-------|------------|-------|------------|----------|---------------|----------------|------------|----|
| NDMA     | 74    | Unit       | 44.1  | Unit       | 4.766    | 0.25          | 0.25           | 199        | 5  |
| NDMA     | 74    | Unit       | 42.1  | Unit       | 4.766    | 0.25          | 0.25           | 199        | 22 |
| ENMA     | 87.9  | Unit       | 71    | Unit       | 5.509    | 0.4           | 0.4            | 199        | 5  |
| ENMA     | 87.9  | Unit       | 42.1  | Unit       | 5.509    | 0.4           | 0.4            | 199        | 22 |
| NDEA     | 102   | Unit       | 85.1  | Unit       | 6.201    | 0.25          | 0.25           | 199        | 3  |
| NDEA     | 102   | Unit       | 56    | Unit       | 6.201    | 0.25          | 0.25           | 199        | 19 |
| EIPNA    | 115.9 | Unit       | 99.1  | Unit       | 6.881    | 0.25          | 0.25           | 199        | 5  |
| EIPNA    | 115.9 | Unit       | 44.1  | Unit       | 6.881    | 0.25          | 0.25           | 199        | 14 |
| DIPNA    | 129.9 | Unit       | 88.1  | Unit       | 7.472    | 0.25          | 0.25           | 199        | 5  |
| DIPNA    | 129.9 | Unit       | 71    | Unit       | 7.472    | 0.25          | 0.25           | 199        | 14 |
| DPNA     | 129.9 | Unit       | 113.1 | Unit       | 7.999    | 0.25          | 0.25           | 199        | 1  |
| DPNA     | 129.9 | Unit       | 88    | Unit       | 7.999    | 0.25          | 0.25           | 199        | 1  |
| DBNA     | 157.9 | Unit       | 141   | Unit       | 9.67     | 0.25          | 0.25           | 199        | 1  |
| DBNA     | 157.9 | Unit       | 99.1  | Unit       | 9.67     | 0.25          | 0.25           | 199        | 7  |

Durch die hohe Matrixlast bei einigen Proben (z.B. Candesartan) empfiehlt es sich den Liner und das Inlet nach grösseren Messserien oder bei Abnahme der Leistungsfähigkeit der Methode auszutauschen bzw. zu reinigen.

## 9 Auswertung

Für die Berechnung der Kalibriergeraden werden die Verhältnisse der Analytpeakflächen zur ISTD Peakfläche gegen die Konzentrationen der Analyten aufgetragen.

Mit den Resultaten der Proben werden die Analytkonzentrationen in der Probe und in der gespikten Probe berechnet. Die Berechnete Wiederfindung in der gespikten Probe muss zwischen 70% und 130% liegen.

Wird ein Nitrosamingehalt oberhalb der Limite nachgewiesen, so wird der Befund durch eine zusätzliche 3-fach Aufarbeitung bestätigt. Als finales Ergebnis wird der Mittelwert der 3-fach Aufarbeitung im LIMS eingetragen

Bei schlechten Wiederfindungen wird die Gehaltsbestimmung über eine Standardaddition durchgeführt. Die Standardaddition muss in-situ validiert werden.

## 10 Protokollierung

Wird die Limite von einem Prüfmuster nicht überschritten, so wird im **LIMS** "< {Limite} ppb" protokolliert.

Beispiele:

- < 30 ppb NDMA
- < 30 ppb NDEA

Wird die Limite von einem Prüfmuster überschritten, so wird im **LIMS** "XX ppb" protokolliert. Die Messunsicherheit wird in diesen Fällen berechnet und ausgewiesen.

Beispiele:

50 ppb NDMA

80 ppb NDEA



## 11 Qualitätskontrolle

- Keine signifikant störenden Signale in der Blank-Aufarbeitung
- Keine signifikant störende Koelution in den gespikten Musteraufarbeitungen
- S/N der gespikten Aufarbeitung mind. 10 f
  ür alle gespikten Nitrosamine
- Korrelation der Kalibriergeraden r > 0.995
- Der 100% Check-Standard muss eine Wiederfindung von 70% 130% aufweisen.
- Quantifier / Qualifier Ratios müssen mit den Werten der Standardlösungen verglichen werden.

## 12 Versionsübersicht

| Versions-Nr.: | Anpassung<br>Datum/Visum: | Änderung zur Vorversion:      |
|---------------|---------------------------|-------------------------------|
| 01            | 19.11.2019 / cma          | Erstellung für Öffentlichkeit |